The 26th International Congress of Theoretical and Applied Mechanics Daegu, Republic of Korea

Experiments and nonlocal continuum modeling of the size-dependent fracture in elastomers^[1,2]

Jeongun Lee, Jaehee Lee and Hansohl Cho^{*}

Korea Advanced Institute of Science and Technology

* hansohl@kaist.ac.kr

Fracture in elastomers

- Extreme, nonlinear deformation \rightarrow fracture •
- Influenced by the size of flaws; the size-dependent fracture^[1,3] •
 - Rupture stretch increases as the specimen size decreases ٠

a) The presence of flaws impacts the fracture behavior^[4]

b) Size-dependent fracture in polydimethylsiloxane (PDMS) specimens

Fracture in elastomers

- Occurs when ...
 - Macroscopically, **G reaches** Γ
 - Griffith theory^[5,6]
 - G: Energy release rate
 - Γ: Fracture energy
 - Microscopically, ε_R reaches ε_R^f
 - Lake-Thomas theory^[7-9]
 - ε_R : Internal energy
 - ε_R^f : critical internal energy; bond dissociation energy

• These approaches are compatible (Lake and Thomas [7])

Objectives

- Predicting the **size-dependent fracture** in elastomers^[1]
 - Experiments and numerical simulations^[2] were carried out
- Internal energy-driven fracture criterion; inspired by the Lake-Thomas model^[7-9]
- Using the **phase-field model** rooted in the gradient-damage theory^[2,9-13]
 - Mesh-insensitive crack propagation process
 - The internal energy-driven fracture criterion
 - Thermodynamics of the damage and fracture

4

Size-dependent fracture & Fracture process zone

- Fracture process zone
 - Where the polymer chains rupture = Where the dissipation mainly occurs
- Stress at point (B) is larger than those at (A) and (A')

• $\sigma_A = \sigma_{A'} < \sigma_B$

- \rightarrow Free energy at point (B) is larger than those at (A) and (A')
 - $\psi_A = \psi_{A'} < \psi_B$
- $\rightarrow \psi_B$ reaches the critical energy earlier than ψ_A
- \rightarrow The larger specimen ruptures earlier

The size of fracture process zone^[1,3,14,15]:

$$l = \frac{\Gamma}{W^*} = \frac{Fracture\ energy}{Critical\ deformation\ energy}$$

Mechanics & Extremes

@ KAIST

- 1. The damage $d \in [0,1]$
 - d=0: intact
 - d=1: fully damaged
- Internal energy-driven fracture criterion
 - Inspired by the Lake-Thomas model^[5]
 - Fracture = Scission of polymer chains
- Governing equations^[9]
 - Macroforce balance Div $\mathbf{T}_{R}=0$
 - Microforce balance

6

- Internal energy should be considered → Bond stretch^[8,9]
 - Deformation = Chain configuration change + stretching of molecular bonds

•
$$\psi_R = (1-d)^2 \left[\frac{1}{2} NnE_b (\lambda_b - 1)^2 + \frac{1}{2} K(J-1)^2 \right] + Nk_b \theta n \left[\frac{\bar{\lambda}\lambda_b^{-1}}{\sqrt{n}} \beta + \ln\left(\frac{\beta}{\sinh\beta}\right) \right] + \frac{1}{2} \varepsilon_R^f l^2 |\nabla d|^2$$

(1-d)² ε_R^0 ; Damage acts on the internal energy only $-\theta \eta_R$; Entropic energy Nonlocal energy¹⁹
a) Reference configuration $\frac{\sqrt{r_0}}{\sqrt{L_0}} L_0$
 $\lambda_b = \frac{L_t}{L_0}$
 $\mathcal{L}(x) = \coth x - \frac{1}{x}$
 $\beta = \mathcal{L}^{-1} \left(\frac{\bar{\lambda}\lambda_b^{-1}}{\sqrt{n}} \right)$

r

a) Deformed configuration

Mechanics & Extremes @ KAIST

7

- 2. Phase-field model rooted in the gradient-damage theory^[9-13]
 - "Diffusive damage zone"

8

- Intrinsic length scale l'
- Microforce balance $\zeta \dot{d} = 2(1-d)\mathcal{H}_R \hat{\varepsilon}_R^f(d-l'^2\Delta d)$

History function; the fracture criterion

- The intrinsic length scale $l' \rightarrow$ the size of diffusive damage zone
 - A numerical parameter; ambiguous physical meaning

Crack propagation; at reference configuration

- Assumption^[1]: Diffusive damage zone = Fracture process zone
 - Regions of the damage evolution and the dissipation
- The size of fracture process zone

 $= \frac{\Gamma}{W^*} = \frac{Fracture\ energy}{Critical\ deformation\ energy} \rightarrow \text{Intrinsic\ length\ scale}$

- \rightarrow Identify the intrinsic length scale *l* from experiments
- \rightarrow Apply to the phase field model
- \rightarrow Predict the **size-dependent fracture** by numerical simulations^[1]

b)^[13] Diffusive damage zone

a) Fracture process zone

9

Experimental procedures^[1]

- Geometries
 - $a = \{0.5, 1, 5\} mm$
 - w = 10a, h = 20a, specimen thickness: 0.5mm

→ w = $\{5, 10, 50\}$ mm

→ $h = \{10, 20, 100\}$ mm

- Materials
 - PDMS
 - TangoPlus (3D-printed elastomer)
- Strain rate 0.01 s⁻¹, temperature $\sim 21^{\circ}$ C
- Digital image correlation (DIC) analysis
 → Strain fields from experiments

The intrinsic length scale l

- $l = \frac{\Gamma}{W^*} \rightarrow$ Experimentally identified intrinsic length scale^[1]
- Γ: Fracture energy
 - from notched specimens
- *W*^{*}: Critical deformation energy
 - from unnotched specimens

PDMS

 $\Gamma \approx 0.25 \text{mJ/mm}^2$, $W^* \approx 2.7 \text{mJ/mm}^3$

 $\rightarrow l \approx 0.08mm$

TangoPlus

 $\Gamma = 0.5 \text{mJ/mm}^2, W^* \approx 0.45 \text{mJ/mm}^3$

 $\rightarrow l \approx 1mm$

Results: Experiment vs. Numerical simulation^[1]

• Strain fields in **PDMS** specimens (l = 0.08mm)

• Larger specimen ruptures earlier

Results: Experiment vs. Numerical simulation^[1]

• Strain fields in **TangoPlus** specimens (l = 1mm)

13

Results: Experiment vs. Numerical simulation^[1]

- Notch lengths $a = \{0.5, 1, 5\}$ mm
- Geometric similarity → Identical initial stress-stretch response
- Smaller notch length \rightarrow Higher rupture stretch

Notch-length sensitivity^[1]

- PDMS vs. TangoPlus; same specimen sizes
 - PDMS: l = 0.08mm
 - TangoPlus: l = 1mm
- More than 10 times

= Rupture stretch of **notched** specimens Rupture stretch of **unnotched** specimens

• Normalized notch length = $\frac{\text{Notch length (a)}}{\text{Intrinsic length scale (l)}}$

Notch-length sensitivity^[1]

- PDMS vs. TangoPlus; same specimen sizes
 - PDMS: l = 0.08mm

More than 10 times

- TangoPlus: l = 1mm
- $a/l: 0.5 \sim 5$ (TangoPlus; l = 1mm) \rightarrow Highly notch length-sensitive
- $a/l: 5 \sim 50$ (PDMS; l = 0.08mm) \rightarrow Less notch length-sensitive

Randomly perforated specimen (TangoPlus)^[1]

- Nicely predicted the response without modification of parameters
 - Progressive fracture of ligaments

Conclusion

- Size-dependent fracture is clearly observed in experiments^[1]
 - Rupture stretch increases as the notch length decreases
 - Size-dependence increases as the notch-root radius decreases
- The intrinsic length scale is central to account for the size-dependent behavior^[1]
 - The intrinsic length scale l defines the size of diffusive damage zone / fracture process zone
 - The intrinsic length scales were identified from experiments
 - Normalized notch length (a/l) determines the size-dependence
- Nonlocal continuum model^[2,9] nicely predicted the fracture in elastomers^[1]
 - Nonlocal continuum model utilizes experimentally identified intrinsic length scales
 - The model captures the size-dependent fracture in elastomers
 - The model is capable of predicting the fracture of complex geometries

Future work

- Fracture involving non-trivial dissipation
 - Mullins effect^[16-20]

 \rightarrow Is the fracture behavior influenced by the rate-independent dissipation (e.g., the Mullins effect) ?

• Viscous dissipation^[16-19,21]

 \rightarrow How to describe complicated deformation and fracture behaviors in polymers?

a) Fracture in double-network elastomers; the Mullins effect and fracture occur^[20]

b) Rate-dependent deformation and fracture behaviors in a hydrogel (polyampholyte gel)^[21]

References

[1] Lee, J., Lee, J., Yun, S., Kim, S., Lee, H., Chester, S. A., & Cho, H. (2024). Size-dependent fracture in elastomers: Experiments and continuum modeling. *Physical Review Materials*, *8*(*11*), *115602*.

[2] Lee, J., Lee, S., Chester, S. A., & Cho, H. (2023). Finite element implementation of a gradient-damage theory for fracture in elastomeric materials. *International Journal of Solids and Structures*, 279, 112309.

[3] Chen, C., Wang, Z., & Suo, Z. (2017). Flaw sensitivity of highly stretchable materials. *Extreme Mechanics Letters*, *10*, <u>50-57</u>.

[4] Pharr, M., Sun, J. Y., & Suo, Z. (2012). Rupture of a highly stretchable acrylic dielectric elastomer. *Journal of Applied Physics*, *111*(10).

[5] Griffith, A. A. (1921). VI. The phenomena of rupture and flow in solids. *Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character*, 221(582-593), 163-198.

[6] Rivlin, R. S., & Thomas, A. G. (1953). Rupture of rubber. I. Characteristic energy for tearing. *Journal of polymer science*, *10*(3), 291-318.

[7] Lake, G. J., & Thomas, A. G. (1967). The strength of highly elastic materials. *Proceedings of the Royal Society of London*. *Series A. Mathematical and Physical Sciences*, *300*(1460), 108-119.

[8] Mao, Y., Talamini, B., & Anand, L. (2017). Rupture of polymers by chain scission. *Extreme Mechanics Letters*, 13, 17-24.

[9] Talamini, B., Mao, Y., & Anand, L. (2018). Progressive damage and rupture in polymers. *Journal of the Mechanics and Physics of Solids*, *111*, 434-457.

References

[10] Peerlings, R. H., de Borst, R., Brekelmans, W. M., & de Vree, J. (1996). Gradient enhanced damage for quasi-brittle materials. *International Journal for numerical methods in engineering*, *39*(19), 3391-3403.

[11] De Borst, R., Pamin, J., & Geers, M. G. (1999). On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. *European Journal of Mechanics-A/Solids*, *18*(6), 939-962.

[12] Francfort, G. A., & Marigo, J. J. (1998). Revisiting brittle fracture as an energy minimization problem. *Journal of the Mechanics and Physics of Solids*, *46*(8), 1319-1342.

[13] Miehe, C., Welschinger, F., & Hofacker, M. (2010). Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. *International journal for numerical methods in* <u>engineering</u>, 83(10), 1273-1311.

[14] Bažant, Z. P. (1997). Scaling of quasibrittle fracture: asymptotic analysis. International Journal of Fracture, 83, 19-40.

[15] Yang, C., Yin, T., & Suo, Z. (2019). Polyacrylamide hydrogels. I. Network imperfection. *Journal of the Mechanics and Physics of Solids*, *131*, 43-55.

[16] Cho, H., Rinaldi, R. G., & Boyce, M. C. (2013). Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea. *Soft Matter*, *9*(27), 6319-6330.

[17] Cho, H., Mayer, S., Pöselt, E., Susoff, M., in't Veld, P. J., Rutledge, G. C., & Boyce, M. C. (2017). Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling. *Polymer*, *128*, 87-99.

[18] Lee, J., Veysset, D., Hsieh, A. J., Rutledge, G. C., & Cho, H. (2023). A polyurethane-urea elastomer at low to extreme strain rates. *International Journal of Solids and Structures*, 280, 112360.

References

[19] Cho, H., Lee, J., Moon, J., Pöselt, E., Rutledge, G. C., & Boyce, M. C. (2024). Large strain micromechanics of thermoplastic elastomers with random microstructures. *Journal of the Mechanics and Physics of Solids*, *187*, 105615.

[20] Nakajima, T., Fukuda, Y., Kurokawa, T., Sakai, T., Chung, U. I., & Gong, J. P. (2013). Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. <u>*ACS Macro Letters*</u>, 2(6), 518-521.

[21] Venkata, S. P., Cui, K., Guo, J., Zehnder, A. T., Gong, J. P., & Hui, C. Y. (2021). Constitutive modeling of bond breaking and healing kinetics of physical Polyampholyte (PA) gel. *Extreme Mechanics Letters*, *43*, 101184.