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Thermoplastic polyurethanes (TPU)

• Block copolymeric materials composed of hard and soft domains[3-5]

• Macro- and micromechanics of “large strain” behavior of thermoplastic polyurethanes (TPU)
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• Block copolymeric materials composed of hard and soft domains[3-5]

• Macro- and micromechanics of “large strain” behavior of thermoplastic polyurethanes (TPU)
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• Random packing of monodispersed spheres in periodic boundary conditions[6,7]

4Construct “Random” microstructures
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• Identification of the neighbors via Voronoi tessellations[8]

• By connecting with the neighbors à continuous, disordered microstructures available

5Random spatial points + tessellations
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Proposed microstructures: Dispersed vs. continuous 6

Dispersed

ContinuousCentral unit cells
with N=7

• Only hard domains shown; we constructed two-phase materials
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Identification of the N for RVEs 7

• Elastic anisotropy of both continuous and dispersed morphologies with N=7

• Universal anisotropy index[9,10]
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Constitutive behavior of hard and soft domains

• High initial stiffness

• Energy dissipation

• Residual strain
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• Rubbery-like behavior

• Compliance

• Resilience

Hard: Thermoplastic behavior Soft: Elastomeric behavior
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Continuous 
with N = 7

Dispersed 
with N = 7

TPUA : vhard =26.9%

• Greater stress response, stiffer initial modulus, significant energy dissipation in the RVE with 
continuous hard domain [11,12]

• Numerical simulation results with five statistical realizations

Dispersed vs. continuous: Role of connectivity
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• In case of TPUBà closer to the stress-strain response with continuous hard domain

• TPUB (higher volume fraction; 39.3%) is likely to possess more “connected” domains

TPUA : vhard =26.9% TPUB : vhard =39.3%

Dispersed vs. continuous: Role of connectivity
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• Contours of plastic flow rates in dispersed and continuous RVEs of TPUB (vhard =39.3%)

• Plastic flow developed throughout the hard ligament, which results in the stress-rollover in 

the RVEs with continuous hard domain

Dispersed Continuous

̅𝜀 = 0.3 ̅𝜀 = 0.3

Dispersed vs. continuous: Role of connectivity
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• Micromechanical model with continuous hard domain nicely captured the main features of 

TPUC with highest volume fraction (vhard = 52.2%)

Dispersed vs. continuous: Role of connectivity
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• Stretch-induced softening (Mullins’ effect) was clearly manifested in the second cycle and was 

nicely captured by the micromechanical model[13,14]

Cyclic loading behavior
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vhard =26.9% vhard =39.3%

TPUA TPUB“Mixed” RVEs

(1) TPUA : 40% continuous / 60% dispersed

(2) TPUB : 70% continuous / 30% dispersed

• Voronoi points 𝑁=10
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40%/60% 70%/30%

vhard =26.9% vhard =39.3%

“Mixed” RVEs

• Nicely captured the major features of the experimentally measured stress-strain response



Mechanics & Extremes 
@ KAIST

16Conclusion and Future works

• Micromechanical modeling of “two-phase” elastomers with two different disordered 
morphologies: (1) dispersed and (2) continuous hard domains

• Connectivity of hard domains impacts key elastic/inelastic features under cyclic loading

• Newly constructed mixed RVEs à co-existing dispersed and continuous morphologies

• Useful tool for micromechanical analysis of  “two-phase” materials with random 
microstructures

à Design of topological features for tailoring macroscopic mechanical properties[11,12]

à Furthermore, explore the fracture behavior in a variety of elastomeric materials[15-18]
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