
Mechanics & Extremes

@ KAIST

Stiffness, strength and reusability

in architected polycrystals

Seunghwan Lee and Hansohl Cho*

Korea Advanced Institute of Science and Technology

* hansohl@kaist.ac.kr

19th European Mechanics of Materials Conference 

Madrid, Spain



Mechanics & Extremes

@ KAIST

Heterogeneous materials

• Heterogeneous materials consist of inelastic “hard” and elastic “soft” domains [1-3]

e.g., two-phase elastomers, copolymers, etc.

→ Outstanding properties including stiffness, strength, energy dissipation and resilience

• Geometric and topological features in hard phases govern the macroscopic mechanical 

responses in heterogeneous materials 
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Single-crystalline architected materials

• Architected “heterogenous” materials on various crystal lattices[4-7]; e.g., simple cubic (SC),

body-centered cubic (BCC), face-centered cubic (FCC)

i) Multi-physical functionalities for a wide variety of engineering applications

ii) High stiffness, strength, mechanical resilience and energy dissipation
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Polycrystalline architected materials

• Mimicking polycrystalline microstructures on a macroscopic scale

i) Strengthening or hardening mechanisms (e.g., Hall-Petch relationship) in

physical metallurgy is applicable[8-9][10-14]

ii) Spatially-varying architected materials[15]
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Grain-size, 𝒅 ⇓

Grain boundary with high connectivity ⇑

i) 
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Polycrystalline architected materials

• Tremendous potential opportunities to explore the structure-property relationships in 

polycrystalline architected materials
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Twin boundary[16] Twin boundary[17]
Twist boundary[8,9]

Twin boundary[8,9]

Role of a wide variety of grain boundary structures
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Objectives

• Emergence of engineering grain boundary structures in metallurgy for architected 

heterogeneous polycrystals comprised of hard and soft domains 

• Understanding the role of grain boundaries in grain-size dependent mechanical features 

and reusability in terms of energy dissipation and load transfer capabilities 
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Design procedures

[18]

• Restrict the range for crystal orientations 𝜃[18]
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Design procedures
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Grain-size ⇓
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ii) Grain-size

• As grain-size decreases, the volume fraction of grain boundaries 

with high strut connectivity increases
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Experimental procedures
9

Compression mechanical tests under plane-strain conditions

* Volume fraction of the “hard” polycrystalline network = 40%
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Directional stiffness - Anisotropy

𝜃

i) Low texture

90°0° 𝜃

ii) High texture
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Loading direction-dependent elastic modulus
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Grain-size effect
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i) Architected heterogenous polycrystals with low texture

• High connectivity throughout grain boundaries

enhances the mechanical responses as grain-size decreases
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ii) Architected heterogenous polycrystals with high texture

• High connectivity throughout grain boundaries

enhances the mechanical responses as grain-size decreases
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• Degree of connectivity throughout grain boundaries

does not sufficiently account for the grain-size effects 
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Grain-size effect
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• “Strength” of grain boundaries relative to grain interiors

is key to understanding grain-size dependent mechanical features 
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Role of GBs in load transfer and energy dissipation

• Stress degradation during the multiple cycles ( ሶ𝜀 = 0.01/s)

• Local failures are observed

15

* Idling time for recovery between cycles : 1 hour

i) Architected heterogenous polycrystals with low texture (Grain-size : Large)
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I

II

III

Role of GBs in load transfer and energy dissipation

* 1st loading cycle

• Local failures are observed to initiate at grain boundaries

with significant inhomogeneous deformation

: Failure initiation
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Role of GBs in load transfer and energy dissipation
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• Inter-grain deformation inhomogeneity due to elastic anisotropy of crystal lattice

    ⇒ Stress concentration at grain boundaries
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Role of GBs in load transfer and energy dissipation
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ii) Architected heterogenous polycrystals with high texture (Grain-size : Large)
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Role of GBs in load transfer and energy dissipation

* 1st loading cycle

ii) Architected heterogenous polycrystals with high texture : 0° loading

• No significant local failures

   ⇒ Low stress degradation
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Role of GBs in load transfer and energy dissipation

* 1st loading cycle

ii) Architected heterogenous polycrystals with high texture : 45° loading

• Significant local failures

   ⇒ Large stress degradation

• Local failures are observed to 

initiate at grain interiors
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Role of GBs in load transfer and energy dissipation

ii) Architected heterogenous polycrystals with high texture 

• Grain boundaries do not strongly influence the local failures due to small Δ𝜑
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Role of GBs in load transfer and energy dissipation

• The angle between the crystal orientations and the loading direction (within the grain interiors) 

is key to understand cyclic behaviors in these highly textured architected polycrystals 

* Macroscopic engineering strain = 15%
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Conclusion and Future works

• Grain boundaries play a crucial role in grain-size dependent mechanical features and 

failures

i) The “strength” of grain boundaries relative to grain interiors is key to tailoring

grain-size dependent mechanical features

ii) Grain boundaries with significant deformation inhomogeneity strongly influence 

reusability of architected heterogenous polycrystals

• In future, the damage, fracture and toughness in these polycrystalline architected materials 

will be explored via experiments and phase-field-based numerical simulations [19-23]
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